Mechanical properties and oxidation resistance of coatings in the Ta-Zr-Si-B-C-N system obtained by magnetron sputtering of a TaZrSiB target in an Ar, N2, and C2H4 atmosphere
https://doi.org/10.17073/1997-308X-2020-2-64-72
Abstract
The method of magnetron sputtering in an argon, nitrogen, and ethylene atmosphere was used to obtain Ta-Zr-Si-B-C-N coatings. The coating structure was studied using scanning electron microscopy, energy dispersive and X-ray phase analysis. Mechanical properties of the coatings were determined using the nanoindentation method. Tribological tests were conducted using a Tribometer automated friction machine at a load of 1 N. Wear tracks were examined on an optical profilometer. The coating oxidation resistance was studied at a temperature of 1000 °C. It was found that coatings deposited in an argon atmosphere feature the highest hardness (30 GPa) and elastic recovery (79%). In addition, they can resist to oxidation up to 1000 °C inclusive due to a protective film consisting of silicon and tantalum oxides formed on their surfaces. Reactive coatings deposited in N2 were inferior to non-reactive coatings in terms of oxidation resistance as they completely oxidized already at 1000 °C. However, they had a low coefficient of friction that was below 0.15.
About the Authors
Ph. V. Kiryukhantsev-KorneevRussian Federation
Cand. Sci. (Tech.), Associate prof., Department of powder metallurgy and functional coatings (PM&FC); Leading researcher, Scientific-Educational Centre of SHS, MISIS-ISMAN.
119049, Moscow, Leninskii pr., 4.
A. D. Sytchenko
Russian Federation
Engineer, Scientific-Educational Centre of SHS, MISIS-ISMAN.
119049, Moscow, Leninskii pr., 4.
A. E. Levashov
Russian Federation
Dr. Sci. (Tech.), Prof., Acad. of Russian Academy of Natural Science, Head of Scientific-Educational Centre of SHS, MISIS-ISMAN; Head of the Department of PM&FC, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
T. A. Lobova
Russian Federation
Dr. Sci. (Tech.), Prof., Leading expert, Department of non-ferrous metals and gold, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
References
1. Nose M., Kawabata T., Watanuki T., Ueda S., Fujii K., Matsuda K., Ikeno S. Mechanical properties and oxidation resistance of CrAlN/BN nanocomposite coatings prepared by reactive dc and rf cosputtering. Surf. Coat. Technol. 2011. Vol. 205. P. S33—S37.
2. Paternoster C., Fabrizi A., Cecchini R., Spigarelli S., Kiryu-khantsev-Korneev Ph.V., Sheveyko A. Thermal evolution and mechanical properties of hard Ti—Cr—B—N and Ti—Al—Si—B—N coatings. Surf. Coat. Technol. 2008. Vol. 203. P. 736—740.
3. Hultman L. Thermal stability of nitride thin films. Vacuum. 200. Vol. 57. P. 1—30.
4. Musil J., Daniel R., Soldan J., Zeman P. Properties of reactively sputtered W—Si—N films. Surf. Coat. Technol. 2006. Vol. 200. P. 3886—3895.
5. Lu-Steffes O.J., Sakidja R., Bero J., Perepezko J.H. Multicomponent coating for enhanced oxidation resistance of tungsten. Surf. Coat. Technol. 2012. Vol. 207. P. 614— 619.
6. Kiryukhantsev-Korneev F.V., Sheveiko A.N., Komarov V.A., Blanter M.S., Skryleva E.A., Shirmanov N.A., Levashov E.A., Shtansky D.V. Nanostructured Ti—Cr—B—N and Ti—Cr—Si—C—N coatings for hard-alloy cutting tools. Russ. J. Non-Ferr. Met. 2011. Vol. 52. P. 311—318.
7. Shtansky D.V., Kiryukhantsev-Korneev Ph.V., Sheveyko A.N., Mavrin B.N., Rojas C., Fernandez A., Levashov E.A. Comparative investigation of TiAlC(N), TiCrAlC(N), and CrAlC(N) coatings deposited by sputtering of МАХ-phase Ti2-хCrхAlC targets. Surf. Coat. Technol. 2009. Vol. 203. P. 3595—3609.
8. Shtansky D.V., Kuptsov K.A., Kiryukhantsev-Korneev Ph.V., Sheveiko A.N. Fernandez A., Petrzhik M.I. Comparative investigation of Al- and Cr-doped TiSiCN coatings. Surf. Coat. Technol. 2011. Vo1. 205. P. 4640—4648.
9. Kuptsov K.A., Kiryukhantsev-Korneev Ph.V., Sheveyko A.N., Shtansky D.V Surface modification of TiAlSiCN coatings to improve oxidation protection. Appl. Surf. Sci. 2015. Vo1. 347. P. 713—718.
10. Musil J., Zeman P. Hard a-Si3N4/MeNx nanocomposite coatings with high therma1 stabi1ity and high oxidation resistance. Solid State Phenomena. 2007. Vo1. 127. P. 31—36.
11. Kiryukhantsev-Korneev Ph.V., Pierson J.F., Kuptsov K.A., Shtansky D.V Hard Cr—A1—Si—B—(N) coatings deposited by reactive and non-reactive magnetron sputtering of CrAlSiB target. Appl. Surf Sci. 2014. Vol. 314. P. 104—111.
12. Kiryukhantsev-Korneev Ph.V., Lemesheva M.V., Shvyndina N.V., Levashov E.A., Potanin A.Yu. Structure, mechanical properties, and oxidation resistance of ZrB2, ZrSiB, and ZrSiB/SiBC coatings. Protection of Metals and Physical Chemistry of Surfaces. 2018. Vol. 54. P. 1147— 1156.
13. Kiryukhantsev-Korneev Ph.V., Sheveyko A.N., Levashov E.A., Shtansky D.V. Investigation of the Si—B—C—N coatings deposited by magnetron sputtering of SiBC targets. Russ. J. Non-Ferr. Met. 2015. Vol. 56. P. 540—547.
14. Vlcek J., Hreben S., Kalas J., Capek J., Zeman P., Cerstvy R. Magnetron sputtered Si—B—C—N films with high oxidation resistance and thermal stability in air at temperatures above 1500 °C. J. Vacuum Sci. Technol. A. 2008. Vol. 26. P. 1101—1108.
15. Zeman P, Capek J., Cerstvy R, Vlcek J. Thermal stability of magnetron sputtered Si—B—C—N materials at temperatures up to 1700 °C. Thin Solid Films. 2010. Vol. 519. P. 306—311.
16. He J., Zhang M., Jiang J., Vlcek J., Zeman P., Steidl P., Me-letis E.L. Microstructure characterization of high-temperature, oxidation-resistant Si—B—C—N films. Thin Solid Films. 2013. Vol. 542. P. 167—173.
17. Zhestkov B.E., Terent'eva V.S. Multifunctional coating MAI D5 intended for the protection of refractory materials. Russ. Metallurgy (Metally). 2010. Vol. 1. P. 33—40.
18. Kiryukhantsev-Korneev Ph.V., Iatsyuk I.V., Shvindina N.V., Levashov E.A., Shtansky D.V. Comparative investigation of structure, mechanical properties, and oxidation resistance of Mo—Si—B and Mo—Al—Si—B coatings. Corr. Sci. 2017. Vol. 123. P. 319—327.
19. Shon I.-J, Ko I.-Y, Chae S.-M., Na K. Rapid consolidation of nanostructured TaSi2 from mechanochemically synthesized powder by high frequency induction heated sintering. Ceram. Int. 2011. Vol. 37. P. 679—682.
20. Li X., Feng J., Jiang Y., Lin H., Feng J. Preparation and properties of TaSi2—MoSi2—ZrO2-borosilicate glass coating on porous SiCO ceramic composites for thermal protection. Ceram. Int. 2018. Vol. 44. P. 19143— 19150.
21. Xu J., Zhang S.K., Lu X.L., Jiang S., Munroe P., Xie Z.-H. Effect of Al alloying on cavitation erosion behavior of TaSi2 nanocrystalline coatings. Ultrasonics Sonochemistry. 2019. Vol. 59. No. 104742.
22. Peng F., Speyer R.F. Oxidation resistance of fully dense ZrB2 with SiC, TaB2, and TaSi2 additives. J. Amer. Ceram. Soc. 2008. Vol. 91. P. 1489—1494.
23. Mansour A.N. Effect of temperature on microstructure and electrical properties of TaSi2 thin films grown on Si substrates. Vacuum. 2011. Vol. 85. P. 667—671.
24. Niu Y, Huang L, Zhai C, Zeng Y, ZhengX., Ding C. Microstructure and thermal stability of TaSi2 coating fabricated by vacuum plasma spray. Surf. Coat. Technol. 2015. Vol. 279. P. 1—8.
25. Schultes G., Schmitt M., Goettel D., Freitag-Weber O. Strain sensitivity of TiB2, TiSi2, TaSi2 and WSi2 thin films as possible candidates for high temperature strain gauges. Sensors and Actuators A: Physical. 2006. Vol. 126. P. 287—291.
26. Inui H., Fujii A., Hashimoto T., Tanaka K., Yamaguchi M., Ishizuk K. Defect structures in TaSi2 thin films produced by co-sputtering. Acta Mater. 2003. Vol. 51. P. 2285— 2296.
27. Liu F., Li H., Gu S., Yao X., Fu Q. Ablation behavior and thermal protection performance of TaSi2 coating for SiC coated carbon/carbon composites. Ceram. Int. 2019. Vol. 45. P. 3256—3262.
28. Chung C.K., Chen T.S. Effect of Si/Ta and nitrogen ratios on the thermal stability of Ta—Si—N thin films. Microelectronic Eng. 2010. Vol. 87. P. 129—134.
29. Chung C.K., Chen T.S., Peng C.C., Wu B.H. Thermal stability of Ta—Si—N nanocomposite thin films at different nitrogen flow ratios. Surf. Coat. Technol. 2006. Vol. 201. P. 3947—3952.
30. Fang J.-S., Su W.-J., Huang M.-S., Chiu C.-F., Chin T.-S. Characteristics of plasma-treated amorphous Ta—Si—C film as a diffusion barrier for copper metallization. J. Electronic Mater. 2014. Vol. 43. P. 212—218.
31. Zeman P., Musil J., Daniel R. High-temperature oxidation resistance of Ta—Si—N films with a high Si content. Surf. Coat. Technol. 2006. Vol. 200. P. 4091—4096.
32. Shtansky D.V., Sheveyko A.N., Sorokin D.I., Lev L.C., Mavrin B.N., Kiryukhantsev-Korneev Ph.V. Show more Structure and properties of multi-component and multilayer TiCrBN/WSex coatings deposited by sputtering of TiCrB and WSe2 targets. Surf. Coat. Technol. 2008. Vol. 202. P. 5953—5961.
33. Kiryukhantsev-Korneev Ph.V., Sheveyko A.N., Lemesheva M., Rupasov S.I., Levashov E.A. Investigation of Si—B—C—N coatings produced by ion sputtering of SiBC target. Protection of Metals and Physical Chemistry of Surfaces. 2017. Vol. 53. P. 873—878.
34. Yoon J.-K., Kim G.-H., Kim H.-S., Shon I.-J., Kim J.-S., Doh J.-M. Microstructure and oxidation behavior of in situ formed TaSi2—Si3N4 nanocomposite coating grown on Ta substrate. Intermetallics. 2008. Vol. 16. P. 1263—1272.
35. Musil J., Zeman P., Baroch P. Hard nanocomposite coatings. Comprehensive Mater. Process. 2014. Vol. 4. P. 325— 353.
36. Ren Y., Qian Y., Xu J., Zuo J., Lia M. Ultra-high temperature oxidation resistance of ZrB2—20SiC coating with TaSi2 addition on siliconized graphite. Ceram. Int. 2019. Vol. 45. P. 15366—15374.
37. Shtansky D.V., Lyasotsky I.V, D'yakonova N.B, Kiryukhantsev-Korneev F.V., Kulinich S.A., Levashov E.A., Moore J.J. Comparative investigation of Ti—Si—N films magnetron sputtered using Ti5Si3 + Ti and Ti5Si3 + TiN targets. Surf. Coat. Technol. 2004. Vol. 182. P. 204—214.
38. Bondarev A.V., Vorotilo S., Shchetinin I.V., Levashov E.A., Shtansky D.V. Fabrication of Ta—Si—C targets and their utilization for deposition of low friction wear resistant nanocomposite Si—Ta—C—(N) coatings intended for wide temperature range tribological applications. Surf. Coat. Technol. 2019. Vol. 359. P. 342—353.
Review
For citations:
Kiryukhantsev-Korneev P.V., Sytchenko A.D., Levashov A.E., Lobova T.A. Mechanical properties and oxidation resistance of coatings in the Ta-Zr-Si-B-C-N system obtained by magnetron sputtering of a TaZrSiB target in an Ar, N2, and C2H4 atmosphere. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(2):64-72. (In Russ.) https://doi.org/10.17073/1997-308X-2020-2-64-72