Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Experimental determination and calculation of wear resistance coefficient for coatings with added nanodispersed carbide particles during laser deposition

https://doi.org/10.17073/1997-308X-2020-2-73-80

Abstract

The paper presents the results of domestic and foreign studies on laser deposition of coatings using hardening carbide phases, as well as metallographic and tribological studies of coatings with Ni-Cr-B-Si alloy powders and with the addition of nanodispersed particles of titanium and tungsten carbides. Wear resistance coefficients of coatings (Kw) were determined in Brinell-Haworth abrasive wear tests. The Kw value was used in coating scratch tests to determine the coefficient С that depends on the coating hardness, treatment modes and addition of solid particles. It was found that the С value is influenced by a number of factors: processing speed, input laser power density, base penetration depth, carbide phase presence and content. The higher the penetration depth, the lower the coating wear resistance due to the mixing of the base material and the deposited coating. The introduction of tungsten carbide nanoparticles in the amount from 3 to 7 % increased the coating wear resistance by 1.5-2.0 times compared to the deposited PR-NiCr15BSi2 coating powder and by 4.6-7.1 times in relation to the base material - 40Cr steel. The microhardness of the initial powder coating was 6400-6600 MPa, and it increases with the introduction of carbides. For example, microhardness reaches 7620-9160 MPa at a WC content of 7 % in the coating. Positive deposition results were obtained at radiation energy density up to 50 W•s/mm2, but its further increase leads to the burnout of alloying elements and dissociation of carbides.

About the Authors

V. P. Biryukov
IMASH RAN
Russian Federation

Cand. Sci. (Tech.), Leading researcher, Laboratory of physical methods of friction surface hardening, IMASH RAN.

101990, Moscow, Maly Kharitonievsky per., 4.



T. A. Bazlova
NUST «MISIS»
Russian Federation

Cand. Sci. (Tech.), Assistant prof., Department of casting technologies and artistic processing of materials, NUST «MISIS».

119049, Moskva, Leninskiy pr-t, 4.



References

1. Li Q., Zhang D., Lei T., Chen Ch., Chen W. Comparison of laser-clad and furnace-melted Ni-based alloy microstructures. Surf. Coat. Technol. 2001. Vol. 137. P. 122— 135.

2. Gomez-del R.T., Garrido M.A., Fernandez J.E., Cadenas M., Rodriguez Y. Influence of the deposition techniques on the mechanical properties and microstructure of NiCrBSi coatings. Mater. Process. Technol. 2008. Vol. 204. No. 1-3. Р. 304—312.

3. St-Georges L. Development and characterization of composite Ni—Cr + WC laser cladding. Wear. 2007. Vol. 263. No. 1-6. P. 562—566. DOI: 10.1016/j.wear.2007.02.023.

4. Janicki D. Direct diode laser cladding of inconel 625/WC composite coatings. J. Mech. Eng. 2016. Vol. 62. No. 6. P. 343—372. DOI: 10.5545/sv-jme.2015.3194.

5. Zhou S., Huang Y., Zeng X., Hu Q. Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding. Mater. Sci. Eng. 2008. Vol. 480. No. 1-2. P. 564—572. DOI: 10.1016/j.msea.2007.07.058.

6. Rong T., Gu D., Shi Q., Cao S., Xia M. Effects of tailored gradient interface on wear properties of WC/Inconel 718 composites using selective laser melting. Surf. Coat. Technol. 2016. Vol. 307. P. 418—427.

7. Shi Y., Li Y., Liu J., Yuan Z. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel. Opt. Laser Technol. 2018. Vol. 99. P. 256—270. DOI: 10.1016/j.optlastec.2017.09.010.

8. Han B., Li M., Wang Y. Microstructure and wear resistance of laser clad Fe—Cr3C2 composite coating on 35CrMo steel. JMEPEG. 2013. Vol. 22. P. 3749—3754. DOI: 10.1007/s11665-013-0708-7.

9. Hong C., Gu D., Dai D., Gasser A., Weisheit A., Kelbassa I., Zhong M., Poprawe R. Laser metal deposition of TiC/In-conel 718 composites with tailored interfacial microstructures. Opt. Laser Technol. 2013. Vol. 54. P. 98—109. DOI: 10.1016/j.optlastec.2013.05.011.

10. Wilson J.M., Shin Y.C. Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC. Surf. Coat. Technol. 2012. Vol. 207. P. 517—522. DOI: 10.1016/j.surfcoat.2012.07.058.

11. Shibang M., Zhihao D., Zhenwei X., YangX, Chao L., Houjie S. Parameter optimization and microstructure evolution of in-situ TiC particle reinforced Ni-based composite coating by laser cladding. J. Eng. Sci. Tech-nol. Rev. 2018. Vol. 11. No. 2. P. 88— 95. DOI: 10.25103/jestr.112.13.

12. Lei Y., Sun R., Lei J.,Tang Y., Niu W. A new theoretical model for high power laser clad TiC/NiCrBSiC composite coatings on Ti6Al4V alloys. Opt. Laser. Eng. 2010. Vol. 48. P. 899—905. DOI: 10.1016/j.optlaseng.2010.03.016.

13. Li J., Chen C., Squartini T., He Q. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti—6Al—4V alloy. Appl. Surf. Sci. 2010. Vol. 257. P. 1550—1555. DOI:10.1016/j.apsusc.2010.08.094.

14. Nurminen J., Nakki J., Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int. J. Refract. Met. Hard Mater. 2009. Vol.27. Р. 472—478. DOI: 10.1016/j.ijrmhm.2008.10.008.

15. Leech P. W., Li X. S., Alam N. Comparison of abrasive wear of a complex high alloy hardfacing deposit and WC—Ni based metalmatrix composite. Wear. 2012. Vol. 294-295. Р. 380—386.

16. Van Acker К., Vanhoyweghen D., Persoons R., Vangrunder-beek J. Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings. Wear. 2005. Vol. 258. Р. 194—202. DOI: 10.1016/j.wear.2004.09.041.

17. Cai B., Tan Y.F., He L., Tan H., Li G. Tribological Properties of TiC particles reinforced Ni-based alloy composite coatings. Trans. Nonferr. Met. Soc. China. 2013. Vol. 13. Р. 1681—1688. DOI: 10.1016/S1003-6326(13)62648-5.

18. Makarov A.V., Soboleva N.N., Malygina I.Y. Role of the strengthening phases in abrasive wear resistance of laserclad NiCrBSi coatings. J. Friction and Wear. 2017. Vol. 38. No. 4. P. 272—278.

19. Wilson J.M., Shin Y.C. Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC. Surf. Coat. Technol. 2012. Vol. 207. No. 25. P. 517—522. DOI: 10.1016/j.surfcoat.2012.07.058.

20. Ma Q., Li Y., Wang J., Liu К. Microstructure evolution and growth control of ceramic particles in wide-band laser clad Ni60/WC composite coatings. Mater. Design. 2016. Vol. 92. Р. 897—905. DOI: 10.1016/j.matdes.2015.12.121.

21. Biryukov V.P., Dozorov A.V. Laser systems for hardening and surfacing of parts and for precise sheet layout. J. Mach. Manufact. Reliabil. 2006. Vol. 35. No. 1. Р. 46—51.

22. Hrushchov M.M., Babichev M.M. Abrasive wear. Moscow: Nauka, 1970 (In Russ.).

23. Biryukov V.P., Gudushauri E.G., Fishkov A.A., Tatarkin D.Yu. Method for determining the wear resistance of the coating: Pat. 2644440 (RF). 2018 (In Russ.).


Review

For citations:


Biryukov V.P., Bazlova T.A. Experimental determination and calculation of wear resistance coefficient for coatings with added nanodispersed carbide particles during laser deposition. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(2):73-80. (In Russ.) https://doi.org/10.17073/1997-308X-2020-2-73-80

Views: 581


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)